[Total No. of Questions: 09]

[Total No. of Pages:]

Uni. Roll No.

Program: B.Tech. (Batch 2018 onward)

MORNING

Semester: III

Name of Subject: Electrical Circuit Analysis

0.9 MAY 2023

Subject Code: PCEE-101

Paper ID: 16064

Scientific calculator is Allowed

Detail of allowed codes/charts/tables etc. ... Nil.

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice

3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

- a) Define a dependent voltage source with the help of a diagram.
- b) Describe unit ramp function and exponential function.
- c) Describe maximum power theorem.
- d) Calculate Laplace of cosot.
- e) Analyse series resonance.
- f) Determine the values of A,B,C,D for transmission parameters.

Part - B

[Marks: 04 each]

- Q2. Explain transfer function representation with the help of a suitable circuit. What is an ideal transformer.
- Q3. Describe Initial and final value theorem of Laplace.
- Q4. Interpret open circuit parameters in terms of short circuit parameters.
- Q5. For the circuit shown determine Norton's equivalent circuit between output terminals AB.

Q6. A 50Hz sinusoidal voltage v=311sinot is applied to a RL series circuit. If the magnitude of resistance is 50hms and that of inductance is 0.02H. Evaluate the rms current, instantaneous current, voltage drop across resistor.

Q7. Evaluate Laplace inverse of $\frac{4}{s^2+6^2}$

Part - C

[Marks: 12 each]

Q8. Solve for Step response of RL series circuit with appropriate circuit.

OR

Explain Superposition theorem, nodal analysis, Thevenin's theorem.

Q9. The driving point impedance of a LC network is represented by

$$Z(s) = 5 \frac{(s^2+4)(s^2+25)}{s(s^2+16)}$$

Evaluate First and Second form of foster

OR

The driving point impedance of a RC network is represented by

$$Z(s) = \frac{(s^2 + 5s + 4)}{(s^2 + 2s)}$$

1-30-7-1

distri

: [460]

Mar.

Page 1

Evaluate First and Second form of Cauer
